12 research outputs found

    Personal care product use and lifestyle affect phthalate and DINCH metabolite levels in teenagers and young adults

    Get PDF
    Humans are widely exposed to phthalates and their novel substitutes, and considering the negative health effects associated with some phthalates, it is crucial to understand population levels and exposure determinants. This study is focused on 300 urine samples from teenagers (aged 12-17) and 300 from young adults (aged 18-37) living in Czechia collected in 2019 and 2020 to assess 17 plasticizer metabolites as biomarkers of exposure. We identified widespread phthalate exposure in the study population. The diethyl phthalate metabolite monoethyl phthalate (MEP) and three di (2-ethylhexyl) phthalate metabolites were detected in the urine of >99% of study participants. The highest median concentrations were found for metabolites of low-molecular-weight (LMW) phthalates: mono-n-butyl phthalate (MnBP), monoisobutyl phthalate (MiBP) and MEP (60.7; 52.6 and 17.6 μg/L in young adults). 1,2-cyclohexanedicarboxylic acid diisononyl ester (DINCH) metabolites were present in 68.2% of the samples with a median of 1.24 μg/L for both cohorts. Concentrations of MnBP and MiBP were similar to other European populations, but 5-6 times higher than in populations in North America. We also observed large variability in phthalate exposures within the study population, with 2-3 orders of magnitude differences in urinary metabolites between high and low exposed individuals. The concentrations varied with season, gender, age, and lifestyle factors. A relationship was found between high levels of MEP and high overall use of personal care products (PCPs). Cluster analysis suggested that phthalate exposures depend on season and multiple lifestyle factors, like time spent indoors and use of PCPs, which combine to lead to the observed widespread presence of phthalate metabolites in both study populations. Participants who spent more time indoors, particularly noticeably during colder months, had higher levels of high-molecular weight phthalate metabolites, whereas participants with higher PCP use, particularly women, tended to have higher concentration of LMW phthalate metabolites.Authors thank the Research Infrastructure RECETOX RI (No. LM2018121) and CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17_043/0009632) for a supportive background. The work was supported by the Operational Programme Research, Development and Innovation – project Cetocoen Plus (CZ.02.1.01/0.0/0.0/15_003/0000469) and the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 857560. This study has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 733032. We thank all collaborating field workers, laboratory and administrative personnel, and especially the cohort participants who invested their time and provided samples and information for this study. This study reflects only the authors’ view and the European Commission is not responsible for any use that may be made of the information it contains.S

    Annual dynamics of perfluorinated compounds in sediment: A case study in the Morava River in Zlín district, Czech Republic

    No full text
    Two groups of perfluorined compounds (PFCs), i.e. perfluoroalkyl sulfonates (PFASs) and perfluoroalkyl carboxylates (PFCAs) were analysed during a period of 1 year in monthly collected riverbed sediment samples from five sampling sites in an industrial region in Morava River catchment in Czech Republic. Levels of PFCs determined in sediment samples were up to 6.8 μg kg-1 of dry weight. Among PFCs analysed, mainly short-chain PFASs (C6 to C8) including PFOS were found in sediment samples and their levels were similar to those found in comparable river basins in other parts of Europe. Concentrations of PFCs were correlated with organic carbon content and their variations were mainly correlated by high flow events on Morava River and its tributaries. The changes in PFC concentrations were induced by displacing of PFCs containing particles to the river sediment during these elevated flow events

    Spatial Soil Modeling of Organochlorine Pesticides, Their Pools and Volatilization Fluxes

    No full text
    Part 5: Information Tools for Global Environmental AssessmentInternational audienceThe goal of this study was to use the modeling tools for prediction of environmental concentrations and pools of pesticides (HCB and DDT) in soil. The characterization and quantification of secondary background sources of HCB, were computed using fugacity based deterministic model. Areas with a high potential for deposition and volatilization of HCB were identified. Results of modeling were maps showing spatial distribution of HCB and DDT in the Czech Republic which have been visualized on the web portal GENASIS (Global Environmental Assessment Information System) to provide information on environment contamination

    Screening for perfluoroalkyl acids in consumer products, building materials and wastes

    No full text
    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a large group of important chemical compounds with unique and useful physico-chemical properties, widely produced and used in many applications. However, due to the toxicity, bioaccumulation and long-range transport potential of certain PFASs, they are of significant concern to scientists and policy makers. To assess human exposure to PFASs, it is necessary to understand the concentrations of these emerging contaminants in our environment, and particularly environments where urban population spend most of their time, i.e. buildings and vehicles. A total of 126 samples of building materials, consumer products, car interior materials and wastes were therefore analyzed for their content of key PFASs - 15 perfluoroalkyl acids (PFAAs). At least one of the target PFAAs was detected in 88% of all samples. The highest concentration of Σ15PFAAs was found in textile materials (77.61 μg kg−1), as expected, since specific PFAAs are known to be used for textile treatment during processing. Surprisingly, PFAAs were also detected in all analyzed composite wood building materials, which were dominated by perfluoroalkyl carboxylic acids with 5–8 carbons in the chain (Σ4PFCAs up to 32.9 μg kg−1). These materials are currently widely used for building refurbishment, and this is the first study to find evidence of the presence of specific PFASs in composite wood materials. Thus, in addition to consumer products treated with PFASs, materials used in the construction of houses, schools and office buildings may also play an important role in human exposure to PFASs

    Screening for halogenated flame retardants in European consumer products, building materials and wastes

    No full text
    To fulfill national and international fire safety standards, flame retardants (FRs) are being added to a wide range of consumer products and building materials consisting of flammable materials like plastic, wood and textiles. While the FR composition of some products and materials has been identified in recent years, the limited global coverage of the data and the large diversity in consumer products necessitates more information for an overall picture of the FR composition in common products/materials. To address this issue, 137 individual samples of various consumer products, building materials and wastes were collected. To identify and characterize potential sources of FRs in indoor environment, all samples were analyzed for content of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDDs) and novel flame retardants (NFRs). The most frequently detected were HBCDDs (85%), with the highest median concentration of Σ4HBCDDs of 300 mg kg−1 in polystyrenes. The highest median concentration of Σ10PBDEs was found in recycled plastic materials, reaching 4 mg kg−1. The lowest concentrations were observed for NFRs, where the median of Σ12NFRs reached 0.4 mg kg−1 in the group of electrical & electronic equipment wastes. This suggests that for consumer products and building materials that are currently in-use, legacy compounds still contribute to the overall burden of FRs. Additionally, contrasting patterns of FR composition in recycled and virgin plastics, revealed using principle component analysis (PCA), suggest that legacy flame retardants are reentering the market through recycled products, perpetuating the potential for emissions to indoor environments and thus for human exposure

    GENASIS Information System: A Global Environmental Assessment of Persistent Organic Pollutants

    No full text
    Part 5: Information Tools for Global Environmental AssessmentInternational audienceGlobal ENvironmental ASsessment and Information System (GENASIS) is a tool developed by expert teams of the Research Centre for Toxic Compounds in the Environment (RECETOX) and the Institute for Biostatistics and Analyses (IBA) of the Masaryk University in Brno. The aim of GENASIS is to compile validated data on persistent organic pollutants, including their properties, sources, long-term levels, life times, transport mechanisms, effects and risks, scattered throughout various institutions and ministries, and to provide tools for their visualization, analyses, interpretation, assessment of environmental and human risks or modelling of fate. Such a tool should significantly enhance comprehensive understanding of the fate of POPs in the environment, their impacts on ecosystem and the human population
    corecore